Close Menu

Sample Medicinal Chemistry Courses

Medicinal Chemistry (CHEM 467)

This course will provide an introduction to medicinal chemistry. Potential topics include organic chemistry in drug design and drug action; structure-activity relationship (SAR); mechanism of drug action; pharmaceutical analysis and formulation; binding affinity, selectivity, and specificity; drug efficacy, toxicity, and oral bioavailability; drug absorption, distribution, metabolism and excretion (ADME); pharmacokinetics (PK); pharmacodynamics (PD); interaction of drugs with enzymes, protein receptors, DNAs, and RNAs; protein-protein interaction; enzyme inhibition and mechanism; molecular target identification and detection; prodrugs; biologics; antibody-drug conjugate (ADC) chemistry; drug discovery process; development of therapeutics, diagnostics, and theranostics; pharmaceutical and clinical data analysis; case studies of preclinical and clinical trials.

Computational Biochemistry and Drug Design (CHEM 456)

A project-based introduction to computer-aided drug design tools and the principles behind them. Molecular docking and molecular mechanics force fields for binding enthalpies. Continuum dielectric models of electrostatics and solvation. The Boltzmann distribution and alchemical binding free energy calculations. Quantitative structure property relationships, including for activity and membrane permeability. This course will include laboratory work.

Analytical method development Lab (CHEM 463)

In this laboratory course, students will learn about method development and assessment for analysis of chemicals, organic compounds, polymers, drugs, pharmaceuticals, and biopharmaceuticals. Students will gain hands-on experience in quantitative analysis and quality assurance and control of diverse chemicals and bioactive agents. This course will foster students to develop quantitative and technical analysis techniques, literature comprehension, critical thinking, problem-solving, and communication skills. The literature and guidance on analytical method development and validation reported by the industry and government agencies will be studied. Potential topics include: analytical separation; instrumental analysis; chromatographic and electrophoretic methods; quality assurance and control; analytical method validation; sampling, preparations and storage of samples and standard solutions; physiochemical characterization; statistical analysis; good laboratory practice (GLP) requirement;  validation, verification, and documentation of analytical testing methods and procedure.

Seminar in Special Topics (CHEM 495)

This seminar course is designed to provide students with opportunities to learn about recent development in specialized chemistry areas including bioanalytical chemistry, environmental chemistry, forensic chemistry, medicinal chemistry, and computational chemistry and biochemistry. Students are expected to develop written and oral communication skills on the advanced and specialized topics.