Answer the following 5 problems.

1. Function Call Stack

 - Describe a typical stack frame. What are the components, and what do they do?
 - What is tail recursion, and what is its benefit?

2. Memory Management

 - What is a garbage collector?
 - Write a small program fragment in your favorite (garbage collected) language in which data is allocated and then made available for collection.
 - Give one advantage and one disadvantage of using a garbage collector.

3. Abstraction

 Suppose you are the manager for a software team. The project they are working on requires a queue, but the library code only has lists. You get two proposals on how to fix this.

 Proposal A Copy the `List` class, and rename it as `Queue`. Add two methods, `enqueue` and `dequeue`. To make unit testing easier, leave in the original `List` methods, such as `insert`.

 Proposal B Create a new class called `Queue`. Use a private member variable of type `List` internally to store the data, and then provide `enqueue` and `dequeue` methods.

 Which of these methods is the best way to do it, and why? (You will **NOT** get credit if you do not justify your answer.)

4. Program Verification

 - What is a weakest precondition?
 - The following program is supposed to take a sorted array A of length $n > 2$, (i.e., $\forall 0 \leq i \leq n - 2 : A[i] < A[i + 1]$). After running, the variable x will contain the index of the array containing the value of y, if it exists. (This is a standard binary search algorithm.) If y is not in A, then the value of x is allowed to be undefined.

   ```
   a := -1;
b := n;
x := (a + b)/2;
while (a+1 < b and A[x] != y) {
   if A[x] < y
      then a := x
   else b := x
}
```
Formally prove or disprove correctness and termination of this program. Do **NOT** assume that the value y is contained in A.

5. Parsing

(a) Consider the following grammar. By convention, the upper-case symbols represent non-terminals, and the lower-case symbols represent terminals.

$$
S \rightarrow E \, \$ \\
E \rightarrow E \, x \, E \\
\quad \mid E \, x \, E \, x \, E \\
E \rightarrow v
$$

i. Give the Characteristic Finite State Machine (CFSM) for the above grammar.
ii. Is the grammar ambiguous? How can you prove it?
iii. Is the grammar LL? Why or why not?