Close Menu

Matthew Dixon

Matthew Dixon

Assistant Professor of Applied Mathematics




Robert A. Pritzker Science Center, Room 106E

Office Hours: 

Tuesdays and Thursdays 3:50 - 4:50 PM


Ph.D. in Applied Mathematics, Imperial College, London
M.Sc. in Parallel and Scientific Computation (with distinction), University of Reading,
M.Eng. in Civil and Environmental Engineering, Imperial College, London,


Computational finance, statistical machine learning, scientific computing, fintech


Faculty Innovation Award, Fall 2018


  • C. Akcora, M.F. Dixon, Y. Gel, and M. Kantarcioglu. Bitcoin Risk Modeling With Blockchain Graphs. To appear in Economic Letters, 2018. 
  • M.F. Dixon, N. Polson, and V. Sokolov. Deep Learning for Spatial-Temporal Modeling: Dynamic Traffic Flows and High Frequency Trading. To appear in Applied Stochastic Models in Business and Industry, 2018.
  • M.F. Dixon. A High Frequency Trade Execution Model for Supervised Learning. High Frequency, 1(1), pp. 32-52, 2018.
  • M.F. Dixon. Sequence Classification of the Limit Order Book using Recurrent Neural Networks. J. Computational Science 24, pp. 277-286, 2017. 
  • M.F. Dixon, D. Klabjan, and J. H. Bang. Classification-based Financial Markets Prediction using Deep Neural Networks. Algorithmic Finance 6(3-4), pp. 66-99, 2017. 
  • M.F. Dixon, J. Chong and K. Keutzer. Accelerating Value-at-Risk Estimation on Highly Parallel Architectures. Concurrency Computat.: Pract. Exper 24(8), Wiley, pp. 895-907, 2012.



Intel funded research in computational finance