Problem 1. Consider the problem of determining whether an arbitrary sequence \(\langle x_1, x_2, \ldots, x_n \rangle \) of \(n \) numbers contains repeated occurrences of some number. Show that this can be done in \(O(n \log n) \) time, where \(\log n \) stands for \(\log_2 n \).

Pseudocode is required. Do analyze the running time.

Problem 2. We say that a digraph \(G = (V, E) \) is half-connected iff for all \(u, v \in V \), there exists either a directed path from \(u \) to \(v \) or a directed path from \(v \) to \(u \). Give an \(O(|V| + |E|) \)-time and space algorithm to determine if a given digraph (adjacency lists representation) is half-connected.

Pseudocode is required. Do analyze the running time and do prove that your algorithm is correct.

Problem 3. Suppose we wish not only to increment a binary number, but also to reset it to zero (i.e., make all bits in it 0). Counting the cost to examine or modify a bit as 1, show how to implement a binary number as an array of bits so that any sequence of \(n \) INCREMENT and RESET operations costs \(O(n) \) on an initially zero number. Do analyze the running time.

Hint: Keep a pointer to the high-order 1.