Illinois Institute of Technology
Physics

M.Sc. Comprehensive and Ph.D. Qualifying Examination

PART I

Thursday, August 23, 2018
4:00 - 8:00 PM

General Instructions

1. Each problem is to be done on a separate booklet. Label the front of each book with the identifying code letter you picked, the part number of the exam, and the number of the problem only; for example: A-I.6. Do not write your name or IIT ID number on any material handed in for grading.

2. Any numerical data not specified in a problem should be found in the table of constants at the front of the exam.

3. DON’T PANIC: It is not expected that each student will completely solve every problem. However, it is advisable to do a thorough job on those problems that you do solve.
Physical Constants

- Speed of light in vacuum: $c = 2.998 \times 10^8$ m/s
- Planck’s constant: $h = 6.626 \times 10^{-34}$ J·s, $\hbar = h/2\pi = 1.055 \times 10^{-34}$ J·s, $= 6.582 \times 10^{-16}$ eV·s
- Permeability constant: $\mu_o = 4\pi \times 10^{-7}$ N/A²
- Permittivity constant: $\frac{1}{4\pi\epsilon_o} = 8.898 \times 10^9$ N·m²/C²
- Fine structure constant: $\alpha = \frac{e^2}{4\pi\epsilon_o\hbar c} = 7.30 \times 10^{-3} \approx \frac{1}{137}$
- Gravitational constant: $G = 6.67 \times 10^{-11}$ m³/s²·kg
- Avogadro’s number: $N_A = 6.023 \times 10^{23}$ mole⁻¹
- Boltzmann’s constant: $k = 1.381 \times 10^{-23}$ J/K = 8.617 × 10⁻⁵ eV/K
- kT at room temperature: $k \cdot 300$ K = 0.0258 eV
- Universal gas constant: $R = 8.314$ J/mole·K
- Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8}$ W/m²·K⁴
- Electron charge magnitude: $e = 1.602 \times 10^{-19}$ C
- Electron rest mass: $m_e = 9.109 \times 10^{-31}$ kg = 0.5110 MeV/c²
- Neutron rest mass: $m_n = 1.675 \times 10^{-27}$ kg = 939.6 MeV/c²
- Proton rest mass: $m_p = 1.672 \times 10^{-27}$ kg = 938.3 MeV/c²
- Deuteron rest mass: $m_d = 3.343 \times 10^{-27}$ kg = 1875.6 MeV/c²
- Atomic mass unit (C₁₂ = 12): $u = 1.661 \times 10^{-27}$ kg = 931.5 MeV/c²
- Mass of earth: $M_E = 5.98 \times 10^{24}$ kg
- Radius of earth: $R_E = 6.37 \times 10^6$ m
- Mass of sun: $M_S = 1.99 \times 10^{30}$ kg
- Radius of sun: $R_S = 6.96 \times 10^8$ m
- Gravitational acceleration at earth’s surface: $g = 9.81$ m/s²
- Atmospheric pressure: $= 1.01 \times 10^5$ N/m²
- Radius of earth’s orbit: $= 1.50 \times 10^{11}$ m
- Radius of moon’s orbit: $= 3.84 \times 10^8$ m

Conversion Factors

- 1 eV = 1.602×10^{-19} J
- 1 Å = 10^{-10} m
- 1 barn (b) = 10^{-28} m²
- 0° Celsius = 273.16 K
- 1 J = 6.242×10^{18} eV
- 1 Fermi = 10^{-15} m
- 1 in = 2.54 cm
- 1 cal = 4.19 J
Problem 1: A string wraps around a uniform cylinder of mass M, which rests on a fixed plane. The string passes up over a massless pulley and is connected to a mass m, as shown in the figure. Assume that the cylinder rolls without slipping on the plane and that the string is parallel to the plane. What is the acceleration of the mass m? What is the condition on the ratio M/m for which the cylinder accelerates down the plane?

Problem 2: By any method you choose show that the following transformation is canonical:

$$
\begin{align*}
 x &= \frac{1}{\alpha} \left(\sqrt{2} P_1 \sin Q_1 + P_2 \right), \\
 y &= \frac{1}{\alpha} \left(\sqrt{2} P_1 \cos Q_1 + Q_2 \right), \\
 p_x &= \frac{\alpha}{2} \left(\sqrt{2} P_1 \cos Q_1 - Q_2 \right), \\
 p_y &= -\frac{\alpha}{2} \left(\sqrt{2} P_1 \sin Q_1 - P_2 \right),
\end{align*}
$$

where α is some fixed parameter.

Apply this transformation to the problem of a particle of charge q moving in a plane that is perpendicular to a constant magnetic field B. Express the Hamiltonian for this problem in the (Q_i, P_i) coordinates, letting the parameter α take the form

$$
\alpha^2 = \frac{qB}{c}.
$$

From this Hamiltonian obtain the motion of the particle as a function of time.

Hint: The Hamiltonian $H(x, y, p_x, p_y) = \frac{1}{2m} \left(p - \frac{q}{c} A \right)^2$, where $A = \frac{B}{2} (-y\hat{i} + x\hat{j})$.

Problem 3: Two identical masses m are constrained to move on a horizontal hoop. Two identical springs with spring constant k connect the masses and wrap around the hoop (see figure). One mass is subject to a driving force $F_d \cos(\omega_d t)$. Find the driven oscillation solution for the motion of the masses.
Problem 4: A physical pendulum consists of a uniform solid disk of mass M and radius R supported in the vertical plane by a pivot located a distance $d < R$ from the center of the disk. The disk is displaced a small angle and released. Derive an expression for the period of the resulting motion.

![Diagram of a physical pendulum](image)

Problem 5: A tall cylindrical vessel with gaseous nitrogen is located in a uniform gravitational field in which the free-fall acceleration is equal to g. The temperature of the nitrogen varies along its height h so that its density is the same throughout the volume. Find the temperature gradient dT/dh.

Problem 6: Two thermally insulated vessels 1 and 2 are filled with air and connected by a short tube equipped with a valve. The volumes of the vessels, the pressures and temperatures of air in them are known (V_1, p_1, T_1 and V_2, p_2, T_2). Find the air temperature and pressure established after the opening of the valve.

Problem 7: A material contains many two-molecule-binding sites. If neither is occupied, the energy is 0, if one of the two is occupied, the energy is ε, and if both are occupied, the energy is $+3\varepsilon$. Compute the (classical) partition function, the free energy, the energy, and the entropy as a function of inverse temperature β.

Problem 8:

(a) Let 580 nm light be normally incident on a double slit system for which $d = 4800$ nm. How many orders (maxima) will be visible on a screen placed in front of the slits?

(b) If the slit width is $a = 800$ nm, which orders, if any, will be missing?